EFES - 2017 - B - Mathématiques II - Corrigé

I. a) $g: x \longmapsto x^{2}-2 \ln x$
i. $\operatorname{dom} g=\mathbb{R}_{+}^{*}$
$\left(\forall x \in \mathbb{R}_{+}^{*}\right) \quad g^{\prime}(x)=2 x-\frac{2}{x}=\frac{2\left(x^{2}-1\right)}{x}$

x	0		1		$+\infty$	
$g^{\prime}(x)$	$\\|$	-	0	+		
$g(x)$	$\\|+\infty$	\searrow	1 minimum	\nearrow	$+\infty$	

ii. La fonction g admet un minimum absolu au point 1 .
$g(1)=1$
Par suite, comme g est continu sur \mathbb{R}_{+}^{*} on a : $\left(\forall x \in \mathbb{R}_{+}^{*}\right) \quad g(x)>0$
b) $f: x \longmapsto \frac{1+\ln x}{x}+\frac{x}{2}$
i. $\operatorname{dom} f=\mathbb{R}_{+}^{*}$
$\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty}\left(\frac{1}{x}+\frac{\ln x}{x}+\frac{x}{2}\right)=+\infty \quad[0+0+\infty]$
En effet: $\lim _{x \rightarrow+\infty} \frac{\ln x}{x} \quad\left[\right.$ f.i. $\left.\frac{\infty}{\infty}\right]$

$$
\overline{[\bar{H}]} \lim _{x \rightarrow+\infty} \frac{1}{x}=0
$$

$\lim _{x \rightarrow 0^{+}} f(x)=-\infty \quad\left[\frac{-\infty}{0^{+}}+0\right]$
A.V. : $x=0$
$\lim _{x \rightarrow+\infty}\left[f(x)-\frac{x}{2}\right]=\lim _{x \rightarrow+\infty}\left(\frac{1}{x}+\frac{\ln x}{x}\right)=0$
A.O. : $y=\frac{x}{2}$
$\operatorname{dom} f^{\prime}=\operatorname{dom} f$
$\left(\forall x \in \mathbb{R}_{+}^{*}\right) \quad f^{\prime}(x)=\frac{x \cdot \frac{1}{x}-(1+\ln x)}{x^{2}}+\frac{1}{2}=\frac{-\ln x}{x^{2}}+\frac{1}{2}=\frac{x^{2}-2 \ln x}{2 x^{2}}=\frac{g(x)}{2 x^{2}}$
f^{\prime} a le même signe que g, donc $\left(\forall x \in \mathbb{R}_{+}^{*}\right) \quad f^{\prime}(x)>0$

x	0		$+\infty$
$f^{\prime}(x)$		+	
$f(x)$	$-\infty$	\nearrow	$+\infty$

$\operatorname{dom} f^{\prime \prime}=\operatorname{dom} f^{\prime}$
$\left(\forall x \in \operatorname{dom} f^{\prime \prime}\right) \quad f^{\prime \prime}(x)=\frac{1}{2} \cdot \frac{x^{2}\left(2 x-\frac{2}{x}\right)-\left(x^{2}-2 \ln x\right) 2 x}{x^{4}}=\frac{1}{2} \cdot \frac{-2+4 \ln x}{x^{3}}=\frac{2 \ln x-1}{x^{3}}$

x	\sqrt{e}		
$f^{\prime \prime}(x)$	-	0	+
	\frown	infl.	\searrow

Représentation graphique : voir page suivante
ii. Soit $x \in \mathbb{R}_{+}^{*}$
$f^{\prime}(x)=\frac{1}{2} \Longleftrightarrow \frac{x^{2}-2 \ln x}{2 x^{2}}=\frac{1}{2} \Longleftrightarrow x^{2}-2 \ln x=x^{2} \Longleftrightarrow \ln x=0 \Longleftrightarrow x=1$
\mathcal{C}_{f} admet une tangente parallèle à Δ au point $A\left(1 ; \frac{3}{2}\right)$.
$\Delta_{1}: y=\frac{1}{2}(x-1)+\frac{3}{2} \Longleftrightarrow y=\frac{1}{2} x+1$
iii. $f(x)-\frac{x}{2}=0 \Longleftrightarrow \frac{1+\ln x}{x}=0 \Longleftrightarrow \ln x=-1 \Longleftrightarrow x=e^{-1}$
$(\forall x \in] e^{-1} ;+\infty[) \quad 1+\ln x>0$
Donc : $D_{\lambda}=\left\{M(x ; y) \mid e^{-1} \leqslant x \leqslant \lambda\right.$ et $\left.\frac{x}{2} \leqslant y \leqslant f(x)\right\}$
$\mathcal{A}\left(D_{\lambda}\right)=\int_{e^{-1}}^{\lambda} \frac{1+\ln x}{x} d x=\int_{e^{-1}}^{\lambda}\left(\frac{1}{x}+\frac{\ln x}{x}\right) d x=\left[\ln x+\frac{1}{2} \ln ^{2} x\right]_{e^{-1}}^{\lambda}=\ln \lambda+\frac{1}{2} \ln ^{2} \lambda+\frac{1}{2}$ u.a.

FIG. 1 - Rep. graph. de $f: x \longmapsto \frac{1+\ln x}{x}+\frac{x}{2}$

$$
\begin{aligned}
\mathcal{A}\left(D_{\lambda}\right)=2 \Longleftrightarrow \ln \lambda+\frac{1}{2} \ln ^{2} \lambda+\frac{1}{2}=2 & \Longleftrightarrow \ln ^{2} \lambda+2 \ln \lambda-3=0 \quad\left[\Delta^{\prime}=1+3=4\right] \\
& \Longleftrightarrow \ln \lambda=-1-2=-3 \text { ou } \ln \lambda=-1+2=1 \\
& \Longleftrightarrow \lambda=e^{-3}[\text { à écarter car } \lambda>1] \text { ou } \lambda=e
\end{aligned}
$$

Donc: $\mathcal{A}\left(D_{e}\right)=2$ u.a.
\qquad
II. $f: x \longmapsto\left\{\begin{array}{lll}e^{x-1} & \text { si } & x \leqslant 1 \\ b+a \ln x & \text { si } & x>1\end{array}\right.$
a) f est continu et dérivable sur $]-\infty ; 1$ [et sur $] 1 ;+\infty[$ quelles que soient les valeurs de a et de b.
étude au voisinage de 1
continuité
$f(1)=1$
f est continu au point d'abscisse $1 \Longleftrightarrow \lim _{x \rightarrow 1^{+}} f(x)=1 \Longleftrightarrow b=1$
Les fonctions $f: x \longmapsto\left\{\begin{array}{lll}e^{x-1} & \text { si } & x \leqslant 1 \\ 1+a \ln x & \text { si } & x>1\end{array}\right.$
sont continues sur \mathbb{R}
dérivabilité

$$
\begin{aligned}
\lim _{x \rightarrow 1^{-}} \frac{f(x)-f(1)}{x-1} & =\lim _{x \rightarrow 1^{-}} \frac{e^{x-1}-1}{x-1} \quad\left[\text { f.i. } \frac{0}{0}\right] \\
& =\overline{\bar{H}]} \lim _{x \rightarrow 1^{-}} e^{x-1}=1=f_{g}^{\prime}(1) \\
\lim _{x \rightarrow 1^{+}} \frac{f(x)-f(1)}{x-1} & =\lim _{x \rightarrow 1^{+}} \frac{1+a \ln x-1}{x-1}=\lim _{x \rightarrow 1^{+}} \frac{a \ln x}{x-1} \\
& =a \lim _{x \rightarrow 1^{+}} \frac{\ln x}{x-1} \quad\left[\text { f.i. } \frac{0}{0}\right] \\
& =a \lim _{x \rightarrow 1^{+}} \frac{1}{x}=a=f_{d}^{\prime}(1)
\end{aligned}
$$

f est dérivable au point 1 si et seulement si $a=1$ et $b=1$
b) $a=1 ; b=1$
i.

ii. $D=D_{1} \cup D_{2}$
où $\quad D_{1}=\left\{M(x, y) \mid 0 \leqslant x \leqslant 1\right.$ et $\left.0 \leqslant y \leqslant e^{x-1}\right\}$ $D_{2}=\{M(x, y) \mid 1 \leqslant x \leqslant e$ et $0 \leqslant y \leqslant 1+\ln x\}$

$$
\begin{aligned}
\mathcal{A}(D) & =\int_{0}^{1} e^{x-1} d x+\int_{1}^{e}(1+\ln x) d x \\
& =\left[e^{x-1}\right]_{0}^{1}+[x \ln x]_{1}^{e} \\
& =1-e^{-1}+e \approx 3,35 \text { u.a. }
\end{aligned}
$$

Calcul de $\int(1+\ln x) d x$

i.p.p.	posons :	$u(x)=1+\ln x$	$v^{\prime}(x)=1$
On a :	$u^{\prime}(x)=\frac{1}{x}$	$v(x)=x$	

$\int(1+\ln x) d x=x(1+\ln x)-\int d x=x(1+\ln x)-x+k=x \ln x+k$
iii. $\mathcal{V}=\pi \int_{0}^{1}\left(e^{x-1}\right)^{2} d x+\pi \int_{1}^{e}(1+\ln x)^{2} d x$

$$
\begin{aligned}
& =\pi \int_{0}^{1} e^{2 x-2} d x+\pi \int_{1}^{e}\left(1+2 \ln x+\ln ^{2} x\right) d x \\
& =\pi\left[\frac{1}{2} e^{2 x-2}\right]_{0}^{1}+\pi \int_{1}^{e}(1+2 \ln x) d x+\pi \int_{1}^{e} \ln ^{2} x d x
\end{aligned}
$$

Calcul de $\int(1+2 \ln x) d x$

i.p.p.	posons :	$(x)=1+2 \ln x$	$v^{\prime}(x)=1$
On a :	$(x)=\frac{2}{x}$	$v(x)=x$	

$\int(1+2 \ln x) d x=x(1+2 \ln x)-2 \int d x=x(1+2 \ln x)-2 x+k=-x+2 x \ln x+k$
$\int_{1}^{e}(1+2 \ln x) d x=[-x+2 x \ln x]_{1}^{e}=e+1$
Calcul de $\int \ln ^{2} x d x$

$$
\left.\begin{array}{lr|ll}
\text { i.p.p. } & \text { posons : } & u(x)=\ln ^{2} x & v^{\prime}(x)=1 \\
\text { On a : } & u^{\prime}(x)=2 \ln x \cdot \frac{1}{x} & v(x)=x
\end{array}\right] \begin{aligned}
& \int \ln ^{2} x d x=x \ln ^{2} x-2 \int \ln x d x=+k \\
& \int_{1}^{e} \ln ^{2} x d x=\left[x \ln ^{2} x-2 x \ln x+2 x\right]_{1}^{e}=e-2 \\
& V=\pi\left(\frac{1}{2}-\frac{1}{2} e^{-2}\right)+\pi(e+1)+\pi(e-2)=2 \pi e-\frac{\pi}{2}-\frac{\pi}{2 e^{2}} \approx 15,3 \text { u.v. }
\end{aligned}
$$

III. a) $(m+2) 3^{x}+(2 m+3) 3^{-x}-2 m=0 \quad\left(E_{m}\right)$
$(m+2) 3^{x}+(2 m+3) 3^{-x}-2 m=0 \quad \mid \cdot 3^{x} \neq 0$
$\Longleftrightarrow(m+2) 3^{2 x}-2 m \cdot 3^{x}+2 m+3=0 \quad\left(E_{m}\right)$
Posons: $u=3^{x}>0$
$\left(E_{m}\right) \Longleftrightarrow(m+2) u^{2}-2 m u+2 m+3=0 \quad\left(E_{m}^{\prime}\right)$
$\mathbf{1}^{\text {er }}$ cas: $m=-2$
$\left(E_{-2}\right) \Longleftrightarrow 4 u-1=0 \Longleftrightarrow u=\frac{1}{4} \Longleftrightarrow 3^{x}=\frac{1}{4} \Longleftrightarrow x=-\log _{3} 4$
(E_{-2}) admet une seule solution
$2^{\text {e }}$ cas : $m \neq-2$
$\Delta_{m}=4 m^{2}-4(m+2)(2 m+3)=-4 m^{2}-28 m-24=-4\left(m^{2}+7 m+6\right)$
$\delta=7^{2}-4 \cdot 6=25$
$\Delta_{m}=0 \Longleftrightarrow m=\frac{7-5}{-2}=-1$ ou $m=\frac{7+5}{-2}=-6$
$P_{m}=\frac{2 m+3}{m+2} ; \quad S_{m}=\frac{2 m}{m+2}$

m	Δ	P_{m}	S_{m}	solutions de $\left(E_{m}^{\prime}\right)$	solutions de $\left(E_{m}\right)$		
$m \in]-\infty ;-6[$	-	+	+	aucune solution	aucune solution		
$m=-6$	0	+	+	une solution (double) strict. positive	une solution unique		
$m \in]-6 ;-2[$	+	+	+	deux solutions strict. positives	deux solutions distinctes		
$m=-2$		$\\|$	$\\|$	une solution stict. positive	une solution unique		
$m \in]-2 ;-\frac{3}{2}$	+	-	-	deux solutions de signes contraires	une solution unique		
$m=-\frac{3}{2}$	+	0	-	deux solutions : 0 et une strict. négative	aucune solution		
$m \in--\frac{3}{2} ;-1$	+	+	-	deux solutions strict. négatives	aucune solution		
$m=-1$	0	+	-	une solution (double) strict. négative	aucune solution		
$m \in]-1 ; 0[$	-	+	-	aucune solution	aucune solution		
$m=0$	-	+	0	aucune solution	aucune solution		
$m \in] 0 ;+\infty[$	-	+	+	aucune solution	aucune solution		

b) i. $\left(\log _{3} x\right)^{2}=2 \log _{3} 19683+\log _{3}\left(x^{3}\right)$
$\left(\log _{3} x\right)^{2}-\log _{3}\left(x^{3}\right)-2 \log _{3} 19683=0$
C.E. : $\left\{\begin{array}{l}x>0 \\ x^{3}>0\end{array} \Longleftrightarrow x>0\right.$

Supposons : $x \in D=\mathbb{R}_{+}^{*}$.
$(E) \Longleftrightarrow\left(\log _{3} x\right)^{2}-3 \log _{3} x-2 \cdot \log _{3}\left(3^{9}\right)=0$
$\Longleftrightarrow\left(\log _{3} x\right)^{2}-3 \log _{3} x-18=0 \quad[\Delta=9+4 \cdot 18=81]$
$\Longleftrightarrow \log _{3} x=\frac{3-9}{2}=-3$ ou $\log _{3} x=\frac{3+9}{2}=6$
$\Longleftrightarrow x=3^{-3}=\frac{1}{27} \in D$ ou $x=3^{6}=729 \in D$
$S=\left\{\frac{1}{27} ; 729\right\}$
ii. $\ln \left(2 e^{x}-5\right)>\ln \left(13 e^{-x}-30 e^{-2 x}\right)$
C.E. : $\left\{\begin{array}{l}2 e^{x}-5>0 \\ 13 e^{-x}-30 e^{-2 x}>0\end{array}\right.$
(1) $\Longleftrightarrow e^{x}>\frac{5}{2} \Longleftrightarrow x>\ln \frac{5}{2}$
(2) $\Longleftrightarrow 13 e^{x}-30>0 \Longleftrightarrow e^{x}>\frac{30}{13} \Longleftrightarrow x>\ln \frac{30}{13}$

Supposons : $x \in D=] \ln \frac{5}{2} ;+\infty[$
(I) $\Longleftrightarrow 2 e^{x}-5>13 e^{-x}-30 e^{-2 x} \quad$ [car ln est une bijection strictement croissante]

$$
\left.\Longleftrightarrow 2 e^{x}-5-\frac{13}{e^{x}}+\frac{30}{e^{2 x}}>0 \quad \right\rvert\, \cdot e^{2 x}>0
$$

$$
\Longleftrightarrow 2 e^{3 x}-5 e^{e^{x} x}-13 e^{e^{2 x}}+30>0
$$

Posons : $u=e^{x}$
$(I) \Longleftrightarrow 2 u^{3}-5 u^{2}-13 u+30>0$
Posons : $p(u)=2 u^{3}-5 u^{2}-13 u+30$

On a : $p(2)=0 \quad$ Horner : | 2 | | -5 | -13 | 30 |
| :--- | ---: | ---: | ---: | ---: |
| | 4 | -2 | -30 | |
| | -1 | -15 | 0 | |

$p(u)=(u-2)\left(2 u^{2}-u-15\right)$
$2 u^{2}-u-15=0 \quad[\Delta=1+4 \cdot 2 \cdot 15=121]$
$\Longleftrightarrow u=\frac{1-11}{4}=-\frac{5}{2}$ ou $u=\frac{1+11}{4}=3$
$p(u)=2 u^{3}-5 u^{2}-13 u+30=(u-2)(2 u+5)(u-3)$

u		$-\frac{5}{2}$		2		3	
$u-2$	-		-	0	+		+
$2 u^{2}-u-15$	+	0	-		-	0	+
$2 u^{3}-5 u^{2}-13 u+30$	-	0	+	0	-	0	+

$(I) \Longleftrightarrow-\frac{5}{2}<u<2$ ou $u>3 \Longleftrightarrow-\frac{5}{2}<e^{x}<2$ ou $e^{x}>3 \Longleftrightarrow x<\ln 2$ ou $x>\ln 3$
$S=(]-\infty ; \ln 2[\cup] \ln 3 ;+\infty[) \cap D=] \ln 3 ;+\infty[$
IV. a) $f: x \longmapsto \frac{1-2 \ln x-2 \ln ^{2} x}{x^{2}}$
$\operatorname{dom} f=\operatorname{dom} f^{\prime}=\mathbb{R}_{+}^{*}$
$\left(\forall x \in \operatorname{dom} f^{\prime}\right) \quad f^{\prime}(x)=\frac{x^{2}\left(-\frac{2}{x}-\frac{4 \ln x}{x}\right)-\left(1-2 \ln x-2 \ln ^{2} x\right) \cdot 2 x}{x^{4}}$

$$
\begin{aligned}
& =\frac{-2 x-4 x \ln x-2 x+4 x \ln x+4 x \ln ^{2} x}{x^{4}} \\
& =\frac{4 x\left(\ln ^{2} x-1\right)}{x^{4}} \\
& =\frac{4\left(\ln ^{2} x-1\right)}{x^{3}}
\end{aligned}
$$

équation de la tangente au point d'abscisse $x_{0} \quad\left(x_{0} \in \mathbb{R}_{+}^{*}\right)$
$\Delta_{x_{0}}: y-f\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$

$$
\begin{aligned}
O(0,0) \in \Delta_{x_{0}} & \Longleftrightarrow 0-f\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)\left(0-x_{0}\right) \\
& \Longleftrightarrow f\left(x_{0}\right)=x_{0} f^{\prime}\left(x_{0}\right) \\
& \left.\Longleftrightarrow \frac{1-2 \ln x_{0}-2 \ln ^{2} x_{0}}{x_{0}^{2}}=4 x_{0} \frac{\ln ^{2} x_{0}-1}{x_{0}^{3}} \quad \right\rvert\, \cdot x_{0}^{2} \neq 0 \\
& \Longleftrightarrow 1-2 \ln x_{0}-2 \ln ^{2} x_{0}=4\left(\ln ^{2} x_{0}-1\right) \\
& \Longleftrightarrow 5-2 \ln x_{0}-6 \ln ^{2} x_{0}=0 \quad\left[\text { posons }: u=\ln x_{0}\right] \\
& \Longleftrightarrow 6 u^{2}+2 u-5=0 \quad\left[\Delta^{\prime}=1+5 \cdot 6=31\right] \\
& \Longleftrightarrow u=\frac{-1-\sqrt{31}}{6}=u_{1} \text { ou } u=\frac{-1+\sqrt{31}}{6}=u_{2} \\
& \Longleftrightarrow x=e^{u_{1}} \text { ou } x=e^{u 2}
\end{aligned}
$$

Les points d'abscisses $e^{\frac{-1-\sqrt{31}}{6}}$ et $e^{\frac{-1+\sqrt{31}}{6}}$ de la courbe représentative de f admettent une tangente passant par l'origine.
b) i. $\int_{1}^{\pi} \sin (\ln x) d x=I$

$$
\left.\begin{array}{lr|ll}
\text { i.p.p. } & \text { posons : } & u(x)=\sin (\ln x) & v^{\prime}(x)=1 \\
\text { On a : } & u^{\prime}(x)=\cos (\ln x) \frac{1}{x} & v(x)=x
\end{array}\right] \begin{array}{lll}
\\
I=[x \sin (\ln x)]_{1}^{\pi}-\int_{1}^{\pi} \cos (\ln x) d x & \\
\text { i.p.p. } \quad \text { posons : } & u_{1}(x)=\cos (\ln x) & v_{1}^{\prime}(x)=1 \\
\text { On a : } & u_{1}^{\prime}(x)=-\sin (\ln x) \frac{1}{x} & v_{1}(x)=x \\
\\
\int_{1}^{\pi} \cos (\ln x) d x=[x \cos (\ln x)]_{1}^{\pi}+I & \\
\text { D'où }: I=[x \sin (\ln x)]_{1}^{\pi}-[x \cos (\ln x)]_{1}^{\pi}-I \\
\Longleftrightarrow 2 I=\pi \sin (\ln \pi)-\pi \cos (\ln \pi)+1 & \\
\Longleftrightarrow I=\frac{\pi}{2} \sin (\ln \pi)-\frac{\pi}{2} \cos (\ln \pi)+\frac{1}{2}
\end{array}
$$

ii. $\int_{0}^{1} x(1-x)^{2017} d x=I$
posons : $u=1-x \Longleftrightarrow x=1-u$

$$
\begin{array}{ll}
\frac{d u}{d x}=-1 & x=0 \Longrightarrow u=1 \\
& x=1 \Longrightarrow u=0
\end{array}
$$

$$
I=-\int_{1}^{0}(1-u) u^{2017} d u=\int_{0}^{1}\left(u^{2017}-u^{2018}\right) d u=\left[\frac{u^{2018}}{2018}-\frac{u^{2019}}{2019}\right]_{0}^{1}=\frac{1}{2018}-\frac{1}{2019}=\frac{1}{4074342}
$$

c) $D=\{M(x ; y) \in \Pi \mid x \geqslant 0$ et $y \geqslant 0$ et $g(x) \leqslant y \leqslant f(x)\}$

$(\forall x \in \mathbb{R}) \quad f(x)=g(x) \Longleftrightarrow x=-1$ ou $x=1$
$(\forall x \in[0 ; 1])(\forall y \in[0 ; 2]) \quad y=f(x) \Longleftrightarrow y=2-x^{2} \Longleftrightarrow x=\sqrt{2-y}$

$$
y=g(x) \Longleftrightarrow y=x^{2} \Longleftrightarrow x=\sqrt{y}
$$

$\mathcal{V}(D)=\pi \int_{0}^{1} y d y+\pi \int_{1}^{2}(2-y) d y=\pi\left[\frac{y^{2}}{2}\right]_{0}^{1}+\pi\left[2 y-\frac{y^{2}}{2}\right]_{1}^{2}=\frac{\pi}{2}+\frac{\pi}{2}=\pi \quad$ u.v.

