30	Le GOUVERNEMENT du grand-duché de luxembourg Ministere de Péducation nationale. de renfance et de la jeunesse	EXAMEN DE FIN D’ÉTUD 2017	ONDAIRES
	BRANCHE	SECTION(S)	ÉPREUVE ÉCRITE
Mathématiques 2		B	Durée de l'épreuve 4 heures
		Date de l'épreuve 24. 05. 2017	
		Numéro du candidat	

I. a) On donne la fonction $g: x \longmapsto x^{2}-2 \ln x$.
i. Déterminer la fonction dérivée de g et étudier le sens de variation de g.
ii. En déduire le signe de g.
b) On donne la fonction $f: x \longmapsto \frac{1+\ln x}{x}+\frac{x}{2}$.
i. Etudier les variations de f [domaine de définition, limites et branches infinies, dérivée première, signe de la dérivée (on peut utilement se servir du signe de g étudié sous a)), tableau de variation, dérivée seconde et concavité, courbe représentative].
ii. Déterminer, si possible, le(s) point(s) de la courbe représentative \mathcal{C}_{f} qui admet(tent) une tangente parallèle à la droite $\Delta: y=\frac{x}{2}$.
Etablir, dans chaque cas, une équation cartésienne et tracer la tangente.
iii. Déterminer le point d'intersection de la courbe représentative \mathcal{C}_{f} et de la droite $\Delta: y=\frac{x}{2}$.
Calculer l'aire du domaine D_{λ} délimité par \mathcal{C}_{f}, la droite Δ et la droite d'équation $x=\lambda$ où $\lambda>1$.
Déterminer la valeur de λ pour que l'aire de D_{λ} soit égale à 2 unités d'aire.
$[(2+1)+(7+2+4)=16$ points $]$
II. On donne $f: x \longmapsto\left\{\begin{array}{lll}e^{x-1} & \text { si } & x \leqslant 1 \\ b+a \ln x & \text { si } & x>1\end{array} \quad(a, b \in \mathbb{R})\right.$
a) Déterminer les valeurs des paramètres réels a et b pour que la fonction f soit continue et dérivable sur \mathbb{R}.
b) On prend $a=1$ et $b=1$.
i. Esquisser le graphe de la fonction f.
ii. Calculer l'aire de la partie D du plan délimitée par la courbe représentative de f, l'axe des abscisses, l'axe des ordonnées et la droite d'équation $x=e$;
iii. Calculer le volume engendré par la rotation autour de l'axe des abscisses de la partie D.
III. a) Déterminer le nombre de solutions de l'équation d'inconnue x

$$
(m+2) 3^{x}+(2 m+3) 3^{-x}-2 m=0
$$

où m est un paramètre réel.
b) Résoudre :
i. $\quad\left(\log _{3} x\right)^{2}=2 \log _{3} 19683+\log _{3}\left(x^{3}\right)$
ii. $\ln \left(2 e^{x}-5\right)>\ln \left(13 e^{-x}-30 e^{-2 x}\right)$.
IV. a) On donne la fonction $f: x \longmapsto \frac{1-2 \ln x-2 \ln ^{2} x}{x^{2}}$.

Trouver, si elles existent, les abscisses des points de la courbe représentative de f qui admettent une tangente passant par l'origine du repère.
b) Calculer :
i. $\quad \int_{1}^{\pi} \sin (\ln x) d x$
ii. $\int_{0}^{1} x(1-x)^{2017} d x$
c) On donne les fonctions

$$
\begin{array}{ll}
f & : \quad x \longmapsto 2-x^{2} \\
g & : x \longmapsto x^{2} .
\end{array}
$$

Construire, dans un même repère orthonormé du plan, les représentations graphiques de f et de g.
Déterminer le volume du solide engendré par la rotation autour de l'axe des ordonnées de l'ensemble des points

$$
D=\{M(x ; y) \mid x \geqslant 0 \text { et } y \geqslant 0 \text { et } g(x) \leqslant y \leqslant f(x)\} .
$$

