LE GOUVERNEMENT DU GRAND-DUCHÉ DE LUXEMBOURG Ministère de l'Éducation nationale, de l'Enfance et de la Jeunesse	EXAMEN DE FIN D'ÉTUDES SECONDAIRES 2017	
BRANCHE	SECTION(S)	ÉPREUVE ÉCRITE
	D	Durée de l'épreuve 1h45
Mathématiques I		Date de l'épreuve 13.6.2017-
		Numéro du candida

1. Soient
$$P(z) = z^2 - 8z + 25$$
,
 $Q(z) = z^4 - 8z^2 + 25$
et $R(z) = z^3 - (8 + i\sqrt{3})z^2 + (25 + i8\sqrt{3})z - i25\sqrt{3}$.

- a. Déterminer toutes les racines de P dans \mathbb{C} .
- b. Résoudre l'équation Q(z) = 0 dans \mathbb{C} .
- c. Sachant que R admet une racine imaginaire pure, factoriser R dans \mathbb{C} .

2. Soient
$$z_1 = \frac{i}{2i\sqrt{3}-2}$$

 $z_2 = \frac{1-i\sqrt{3}}{2i}$
et $z_3 = -\sqrt{2}(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4})$

I.

a. Déterminer la forme algébrique de z_1 et de z_2 .

b. Soit $Z = \frac{z_3^6}{z_2}$. Déterminer la forme trigonométrique de Z.

3. Soit
$$z = -i\sqrt{3} - 1$$
.

Déterminer les racines quatrièmes de z et représenter-les dans le plan de Gauss. ($3cm \equiv \sqrt[4]{2}$)

$$((2+8+7) + (3+5) + 7) = 32$$
 points)

Soit le système (*):

II.

1.

$$\begin{cases} x + \frac{y}{3} - z = \frac{1}{3} - m \\ 4x + 3y + mz = 4m \\ 2mx + y - mz = m - 1 \end{cases}$$

- a. Déterminer les valeurs du paramètre réel m, tels que (*) possède une solution unique.
- b. Résoudre (*) si m = 1 et donner une interprétation géométrique.

2. Résoudre le système d'équations (**):

$$\begin{cases} 2x - \sqrt{6}y - 2\sqrt{3}z = \sqrt{2} \\ -2\sqrt{3}x + 3\sqrt{2}y + 6z = -2 \\ \sqrt{3}x - \frac{3\sqrt{2}}{2}y - 3z = 1 \end{cases}$$

et donner une interprétation géométrique.

$$((4+7) + 5 = 16 \text{ points})$$

III. Dans l'espace muni d'un R.O.N.,

solution solution solution solution is a solution of the solution of the solution in the solution of the solu

- 1. Déterminer les équations paramétriques de la droite d = (AB).
- 2. Déterminer une équation cartésienne du plan π , contenant la droite d et dont \vec{u} est un vecteur directeur.
- 3. Déterminer un système d'équation cartésiennes de d', perpendiculaire à π et passant par le point C.

(3 + 3 + 6 = 12 points)