	EXAMEN DE FIN D’ÉTUDES SECONDAIRES 2017	
BRANCHE	SECTION(S)	ÉPREUVE ÉCRITE
Mathématiques I	D	Durée de l'épreuve 1h45
		Date de l'épreuve 13.6.2017
		Numéro du candidat

I. 1. Soient $P(z)=z^{2}-8 z+25$,

$$
Q(z)=z^{4}-8 z^{2}+25
$$

et $\quad R(z)=z^{3}-(8+i \sqrt{3}) z^{2}+(25+i 8 \sqrt{3}) z-i 25 \sqrt{3}$.
a. Déterminer toutes les racines de P dans \mathbb{C}.
b. Résoudre l'équation $Q(z)=0$ dans \mathbb{C}.
c. Sachant que R admet une racine imaginaire pure, factoriser R dans \mathbb{C}.
2. Soient $z_{1}=\frac{i}{2 i \sqrt{3}-2}$

$$
\begin{aligned}
z_{2} & =\frac{1-i \sqrt{3}}{2 i} \\
\text { et } \quad z_{3} & =-\sqrt{2}\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)
\end{aligned}
$$

a. Déterminer la forme algébrique de z_{1} et de z_{2}.
b. Soit $Z=\frac{z_{3}^{6}}{z_{2}}$. Déterminer la forme trigonométrique de Z.
3. Soit $z=-i \sqrt{3}-1$.

Déterminer les racines quatrièmes de z et représenter-les dans le plan de Gauss.
$(3 \mathrm{~cm} \equiv \sqrt[4]{2})$

$$
((2+8+7)+(3+5)+7)=32 \text { points })
$$

II. 1. Soit le système $\left(^{*}\right):\left\{\begin{array}{c}x+\frac{y}{3}-z=\frac{1}{3}-m \\ 4 x+3 y+m z=4 m \\ 2 m x+y-m z=m-1\end{array}\right.$
a. Déterminer les valeurs du paramètre réel m, tels que $\left({ }^{*}\right)$ possède une solution unique.
b. Résoudre (*) si $m=1$ et donner une interprétation géométrique.
2. Résoudre le système d'équations $\left({ }^{* *}\right): \quad\left\{\begin{array}{c}2 x-\sqrt{6} y-2 \sqrt{3} z=\sqrt{2} \\ -2 \sqrt{3} x+3 \sqrt{2} y+6 z=-2 \\ \sqrt{3} x-\frac{3 \sqrt{2}}{2} y-3 z=1\end{array}\right.$ et donner une interprétation géométrique.

$$
((4+7)+5=16 \text { points })
$$

III. Dans l'espace muni d'un R.O.N.,
soient les points $\mathrm{A}(1 ;-2 ; 0), \mathrm{B}(2 ;-1 ; 3)$ et $\mathrm{C}(0 ; 1 ;-2)$ et le vecteur $\vec{u}\left(\begin{array}{c}1 \\ -2 \\ -1\end{array}\right)$.

1. Déterminer les équations paramétriques de la droite $\mathrm{d}=(\mathrm{AB})$.
2. Déterminer une équation cartésienne du plan π, contenant la droite d et dont \vec{u} est un vecteur directeur.
3. Déterminer un système d'équation cartésiennes de d^{\prime}, perpendiculaire à π et passant par le point C.

$$
(3+3+6=12 \text { points })
$$

