Epreuve écrite

Examen de fin d'études secondaires 2000	Nom et prénom du candidat:
Section: B texterrele	
Branche: Mathématiques Ibc	

- I. Soit $P(z) = z^4 2z^3 + (9+10i)z^2 2(4+5i)z 2+16i$ et l'équation P(z) = 0 (I)
 - 1) Démontrer que si $\alpha \in \mathbb{C}$ est une solution de (I), alors $1-\alpha$ est aussi une solution de (I).
 - 2) Résoudre alors l'équation (I) sachant que qu'elle admet une racine imaginaire pure.
 - 3) Démontrer que les images A, B, C, D des racines de l'équation (I) forment un parallélogramme.
- II. 1) Soit le nombre complexe $Z = 1 + z + z^2$, avec $z = e^{i\alpha}$, $\alpha \in \Re$. Ecrire Z sous forme trigonométrique.
 - 2) a) Résoudre dans C l'équation $z^3 = \frac{\sqrt{2}}{2}(-1+i)^7$ (I)

On notera b la solution de (I) telle que $-\frac{\pi}{2} + 2k\pi < \arg b < 2k\pi$, $k \in \mathbb{Z}$.

- b) Résoudre à nouveau l'équation (I) après l'avoir mise sous la forme $\frac{z^3}{b^3} = 1$ et en utilisant les racines cubiques de l'unité. Ecrire les solutions sous forme algébrique.
- c) De a) et b) déduire les valeurs exactes de $\cos \frac{5\pi}{12}$ et de $\sin \frac{5\pi}{12}$
- III. Dans le plan rapporté au repère orthonormal $(0, \vec{i}, \vec{j})$ on considère les courbes C_m d'équations $mx^2 + (m+2)y^2 2m(m+1)x + 2(m+2)y + m^3 3m = 0 , m \in \Re$

- 1) Etudier, suivant les valeurs de m, la nature des courbes C_m .
- 2) Dans le cas d'une ellipse, indiquer l'axe focal, les sommets et les foyers.
- 3) Dans le cas d'une hyperbole, indiquer, dans le repère $(0, \bar{i}, \bar{j})$, l'axe transverse ainsi que les équations des asymptotes.
- 4) Déterminer une équation de l'hyperbole équilatère **H** de foyer $F(-\sqrt{2},-1)$ et de directrice D: $x = -\frac{\sqrt{2}}{2}$. Est-ce que **H** est une des courbes C_m ?

Répartition des points : 20, 20, 20.